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Abstract. Measurements of differential resistance in a superconductor-degenerate semiconductor junction
Nb − n++GaAs at T = 1.6 K show close similarity to those for a conventional superconductor-insulator-
normal metal junction, except for the position of the minimum which is located at 3.6 meV. Using a
simple model for the charge screening at the Schottky barrier, we give an argument why this minimum
is by far displaced with respect to the superconducting gap energy (∆g = 1.5 meV for bulk Nb). We
argue that a rebuilding of the density of states takes place at the barrier, due to the imperfect metal
screening in the degenerate semiconductor. Energy states close to the degenerate semiconductor Fermi
energy are depleted at the barrier and are not available for tunneling, up to an energy Eg which adds to
the superconducting gap ∆g.

PACS. 73.30.+y Surface double layers, Schottky barriers, and work functions – 73.40.-c Electronic
transport in interface structures – 74.80.Fp Point contacts; SN and SNS junctions

1 Introduction

Superconductor-semiconductor (S − Sm) contacts have
been intensively investigated both experimentally and the-
oretically for over 30 years [1]. In the 1980s and 1990s, a
remarkable effort was done in order to complete the phys-
ical pictures of this type of contact in different structures:
simple S − Sm contacts [2,3], superconducting field ef-
fect transistor [4], sandwich-type S − Sm− S membrane
Josephson junctions [5], S−Sm−S light sensitive semicon-
ducting barrier junctions [6]. In recent years the topic at-
tracts new interest because of the promising role of hybrid
systems in technological advances. In particular, a new
class of S−Sm contacts is investigated, namely junctions
between a superconductor and a two-dimensional electron
gas in semiconductor heterostructures [7].

It is well known that, when a metal (normal or super-
conducting) is in contact with a semiconductor, a Schottky
barrier is formed at the interface and the interface trans-
mittance can be changed over many orders of magnitude
by varying the Sm doping [8]. Recently, considerable ef-
forts are being devoted to the study of the superconductor-
degenerate semiconductor (S − dSm) junction, when the
carrier density in the semiconductor is so high, that the
latter plays the role of a normal metal with a Fermi level µ
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in the conduction band [9]. As a matter of fact, the An-
dreev conduction is observed in such contacts [10].

In normal metal-superconductor (N−S) point contact
structures, the Blonder, Tinkham and Klapwijk (BTK)
model [11] for current transport applies satisfactorily [2].
Within the same model, the minimum of the differential
resistance R(V ) = dV/dI for superconductor- insulator -
normal metal (S–I–N) junctions should be located at the
voltage V = ∆g/e, that is at the superconducting energy
gap. This is usually well confirmed by experiments [10].

If the same picture holds for the S − dSm junctions,
the minimum of R(V ) should here be found at V = ∆g/e,
as well. Surprisingly, we have collected quite a few piece of
evidence, including data by different experimental groups
in various S − dSm contacts, that show in a convincing
way that this is not the case. The R(V ) dependence shows
that the minimum is markedly shifted with respect to the
value of the voltage corresponding to ∆g.

The anomaly was reported in measurements of vari-
ous contacts: Sn − p+GaAs [2], Nb − n++Si [12], Nb −
n++GaAs [3]. The carrier density in the mentioned degen-
erate Sm contacts ranges between n = 2×10+18 cm−3 [2]
and n = 10+19 cm−3 [3]. This finding is usually notified
without offering any explanation. The authors of refer-
ence [2] make the conclusion that the minimum is not a
good measure of ∆g in S − Sm junctions.
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The shift of the minimum in R(V ) does not seem to
fit with the BTK picture [2] and urges for interpretation.

In this paper we exclude that the observed shift is due
to an increase of ∆g. As explained in Appendix A, the su-
perconducting coherence in the metal side of the interface
plays a minor role in the screening, as the typical screening
length on the superconducting side is the Debye length of
full metal screening, λD, which is quite small. Hence, we
infer that the superconducting properties do not influence
much the Schottky barrier at the interface.

Instead, we attribute the shift of the minimum of R(V )
to the peculiar features of the Schottky barrier charge
screening on the Sm side of the S − dSm interface.

In Section 2 we present the experimental findings and
we outline our interpretation.

In Section 3, we solve a simple one-dimensional bar-
rier model which, in the spirit of the BTK approach, is
intended to mimic the depletion layer. We show that the
energy dependence of the density of states is modified by
the single particle scattering against the barrier. The mod-
ification takes the form of a lack of states available for
tunneling, up to an energy Eg which can be of the order
of ∆g itself. Indeed, for an opaque barrier, quite a few
states originally below µ are moved to higher energies,
which produces an enhancement of the conduction at the
voltage V ∼ (Eg +∆g)/e.

In Section 4 we discuss the interpretation of the exper-
imental findings provided by our model.

2 Experimental observation of the differential
resistance and its qualitative explanation

In this section we report on measurements of R(V ) per-
formed by some of us [3] in Nb − n++GaAs contacts.

The contact was done between the Nb film and the
n++GaAs layer with the Si impurity concentration n =
10+19 cm−3. Figure 1 shows the schematic of the sam-
ple. The Si impurity concentration of the n+GaAs layer
was about 5×10+17 cm−3. The dashed line in Figure 1
shows penetration of the Au−Ge−Ni alloy into the GaAs
material after annealing. The junction resistance was mea-
sured using a conventional four terminal lock-in technique.
Since the high-frequency field-effect transistor geometry
with small contact paths was used, it was possible to bond
only one Al wiring both to the Nb electrode and to the
Au − Ge − Ni ohmic contact of the n++GaAs layer. One
large Au chip carrier path was connected with the Nb elec-
trode and another one was connected with the Au−Ge−Ni
ohmic contact of the n++GaAs layer. The two copper ter-
minals of the electronic set-up were attached to these chip
carrier Au paths. Further details on the sample fabrication
can be found in reference [3].

Figure 2a shows the dependence of the dynamic resis-
tance on the applied voltage of the Nb−n++GaAs contact
measured at T = 1.6 K. On the measured R(V ) curve a
strong resistance peak occurs near zero bias and a mini-
mum appears around 3.6 meV at a bias current of 30 µA.
This is a big shift with respect to an expected minimum
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Fig. 1. Schematic of the sample (Ref. [3]). Cross-section is cut
along the short dimension (1µm) of the Nb contact. The long
dimension of the Nb contact is 60 µm.
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Fig. 2. The differential resistance R(V ) in a Nb−n++GaAs
contact (a). The R(V ) in a Al-Al2O3-Nb contact fabricated and
measured under the same conditions is reported for comparison
(b). The latter clearly shows that the minimum is located at
the voltage corresponding to the superconducting energy gap.

to be measured at the superconducting energy gap of the
bulk Nb (∆g = 1.5 meV). We exclude the possibility to
explain the observed shift by the presence of a series resis-
tance in n++GaAs material. This material has a length of
1 µm and is located between Au−Ge−Ni and Nb contacts
(see Fig. 1). A simple estimation gives for the associated
series resistance a value of about 0.55 Ω [8], which is too
low to justify the observed volage shift at a bias current of
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30 µA. In order to test the reliability of R(V ) as measured
by our apparatus, the same measurements were performed
on Al − Al2O3 − Nb junctions at T = 2.1 K and the re-
sult is shown in Figure 2b. Actually, the R(V ) curve of
Figure 2b is the typical one to be expected in the case of
a conventional S–I–N tunnel junction. The voltage posi-
tion of the minimum is 1.6 meV and it coincides with the
superconducting energy gap of the bulk Nb.

Qualitatively, the shape of the R(V ) dependence of
the conventional S–I–N junction (Fig. 2b) is similar to
the R(V ) curve of the Nb−n++GaAs contact. This shows
that the n++GaAs layer investigated in [3] can be consid-
ered as a normal metal. Indeed, GaAs with a concentra-
tion of dopants of n = 10+19 cm−3 is a strongly degenerate
semiconductor in the temperature range from T = 0 K up
to T = 300 K. The Fermi level µ, measured from the bot-
tom of the conductance band Ec, can be simply estimated
as if the degenerate GaAs were a Drude metal [9]:

n = (8π/3)(2m∗
n/h

2)3/2(µ− Ec)3/2. (1)

For the sample of reference [3], equation (1) gives the value
of µ− Ec � 253 meV.

We claim that the observed shift can be explained from
the point of view of the charge screening at the Schot-
tky barrier of the S − dSm interface. What makes the
difference with respect to a S–I–N junction is the im-
perfect metal screening in the degenerate semiconductor
which renders the energy states close to the Fermi en-
ergy not available for tunneling. Because of the presence
of the Schottky barrier, there is a depletion of tunneling
states close to the interface on the Sm side, up to an
energy Eg. Therefore, the experimentally measured min-
imum in dV/dI is shifted with respect to V = 0 of the
quantity (Eg +∆g)/e. Our qualitative model allows us to
give a simple numerical estimate for Eg, of the order of
the measured value.

The outline of our argument is the following. Let us
first consider the N − Sm junction. A Schottky barrier
forms with a double layer of charge at the interface. Neg-
ative charge is accumulated on the metal side while mobile
negative carriers are depleted on the semiconducting side,
over a distance w ≈ 8 ÷ 12×10−7 cm calculated for our
experimental situation of n = 10+19 cm−3 [8] (see Fig. 3).
The fact that the metal side is superconducting has mi-
nor effects at equilibrium, because of the full screening
of the charge accumulated on the S side. This is shown
by us in an elementary way in Appendix A, using a two
fluid picture. Screening occurs on distances of the order
of the Debye length λD as if the metal were normal con-
ducting. This length is much smaller than the coherence
length of Nb. Our macroscopic approach could be ques-
tionable, if subgap conductance takes place, what we think
is not the case here. Proximity effects, in the form of a zero
voltage anomaly due to Andreev scattering, are presently
studied in very transparent junctions. On the contrary, we
consider finite bias differential resistance here, which sug-
gests that the barrier in these samples is quite opaque to
tunneling.
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Fig. 3. Sketch of the energy-bands with band bending at the
superconductor-n-type semiconductor contact.

We conclude that the superconductor plays the same
role in S − dSm contacts as in S–I–N junctions, and we
take the semiconductor for responsible of the anomaly in
the minimum position, due to imperfect screening. How
this happens, is described in the following.

Being the bulk semiconductor heavily doped such to
be degenerate, the Fermi energy level is located above the
bottom of conduction band and a Fermi sea of mobile
carriers is formed. Some of the carriers are involved in the
screening of the electric field produced by the Schottky
barrier formation, very much like what Friedel oscillations
of the electron density in a metal around an impurity do. If
the Fermi sea is quite substantial, full screening still leaves
plenty of mobile carriers for tunneling conduction and the
system behaves as a S–I–N tunnel junction. In this case,
the differential conductance due to quasiparticles displays
a maximum at a voltage V = ∆g/e, the superconducting
gap. Because the number of carriers in the degenerate Sm
changes with temperature, some dependence of the cur-
rent density on the temperature would make the difference
between a S–I–N junction and a S − dSm contact.

On the contrary, if the Fermi energy level is slightly
greater then the bottom of conduction band, i.e. the Fermi
level is tiny, carriers are localized at the interface on a scale
of k−1

F , which is quite large (∼0.1w), because the Fermi
wavevector kF is rather small compared to the metallic
case. At difference with what happens in the S–I–N junc-
tion, the local density of states of the degenerate semi-
conductor at the interface, on which the tunneling cur-
rent depends, becomes strongly energy dependent. This is
what we call “imperfect screening”: states within an en-
ergy range Eg about µ contribute to the screening and are
unavailable for tunneling. That a very strong modification
takes place in the density of states close to the interface is
confirmed by the fact that the value of Eg, which is experi-
mentally found, is up to ten times the Fermi energy in the
bulk of the degenerate semiconductor. This proves that
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a strong modification of the band close to the interface
occurs.

As an order of magnitude, let us assume that the
screening in the dSm requires the localization of some
conduction carriers within the depletion region up to a
distance w from the interface. Crudely speaking, energies
up to �

2/2m∗
nw

2 are unavailable for tunneling. This pro-
vides a rough estimate for Eg, that is of the same order of
magnitude of the measured one.

3 Model for the charge screening
at the Schottky barrier

According to the picture of the previous section, the novel
feature in a degenerate semiconductor is the coexistence of
a small Fermi sea with a depletion region close to the inter-
face. At very low temperature, one can assume that there
is a volume up to a distance L from the interface in which
the electron transport is ballistic. If this is the case, the
depletion region acts as a barrier potential which affects
the phase shifts of the incoming electrons. If the interface
is well fabricated and finite size effects on the junction
area can be neglected, particles conserve the parallel mo-
mentum and the problem is effectively one-dimensional.

In this section we calculate the energy dependence of
the phase shifts δ of particles impinging on a barrier in one
dimension. Our toy problem can be related to a change of
the local density of states of the metal because of the de-
pletion layer close to the surface, as we will explain below.

Mobile electrons impinging from the left (L) onto a
square barrier of height V0 and width 2a, are described
by plane waves with scattering amplitudes fL,R. The one-
electron wavefunction ψ(x), of wavevector k, is:

ψ>(x) ∝ eikx + fReikx x� 0

ψ<(x) ∝ eikx + fLe−ikx x� 0. (2)

Here the transmission coefficient is T = |1 + fR|2
while the reflection coefficient is R = |fL|2 satisfying con-
servation of flux: T + R = 1. In Figure 4 we plot the
transmission T vs. energy ε for various barrier strengths:
V0a

2 = 1, 5, 10. Its oscillations are the result of quantum
interference at the scattering potential.

By placing the square barrier symmetrically with re-
spect to the origin we can factorize the scattering into
even and odd parity waves. Hence we define the even and
odd parities f l: f0 = 1

2 (fL +fR) and f1 = 1
2 (fR−fL) and

the elastic t− matrix tl = ikf l/π. The matrix t is related
to the S− matrix according to:

Sl − 1 = −2πi
k
tl; tl = −k

π
sin δleiδl

(3)

because Sl = e2iδl

, where δl (l = 0, 1) are the phase shifts
for the two parities.

By solving the Schrödinger equation for the scatter-
ing amplitudes it is easy to find the phase shifts for the
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Fig. 4. The transmission coefficient T vs. energy ε in a square
barrier one-dimensional model for various strengths: V0a

2 =
1, 5, 10 in �

2/2m units.

scattering electrons:

δ0,1(k) = −1
2

(
2ka+ arctan

( s−
2

tanh2κa
)

± arctan
(s+

2
sinh 2κa

))
. (4)

Here is κ =
√
V0 − k2, with k2 < V0 ( �

2/2m = 1 ). The
+(−) sign is for the even (odd) parity and s± = κ

k ± k
κ .

In a metal, the scattering by a localized perturbation
produces an energy change of the phase-shifts of the elec-
tron wave functions close to the Fermi surface. This can be
related to the change in the density of states at energy ε
with respect to the one of the pure metal:

∆ν(ε) = − 1
π
�mTr(G − Go)(ε). (5)

Here G(ε) ≡ G(x, x′, ε) is the single particle retarded
Green’s function in the metal in presence of the per-
turbing potential V (x), as compared to Go, which is
the unperturbed Green’s function. They are related by
the scattering t-matrix t(ε) = V (1 − GoV )−1 because
G = Go + GotGo. Being the perturbation potential in-
dependent of the energy, it is easy to see that:

∆ν(ε) =
1
π
�m

{
∂

∂ε
ln dett(ε)

}
=

1
π

∑
l=0,1

∂δl(ε)
∂ε

· (6)

In Figure 5 the change in the density of states according
to equation (6) is plotted vs. energy ε for various barrier
strengths (V0a

2 = 1, 5, 10) in units of the bulk density of
states νb = L/πvF (vF is the Fermi velocity). The larger
the barrier strength is, the larger is the depletion of one
particle states close to the band bottom. States at lower
energies are depleted and moved to higher energies, where
they are bunched together. This is the origin of the peak
in the modified density of states. The higher is the barrier,
the larger is the energy range where states are depleted
and moved to energies just above the dip at energy Eg.
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Fig. 5. The change in the density of states ∆ν(ε) induced by
the barrier as derived from equation (6), for the same barrier
strengths as in Figure 4, in units of the bulk density νb =
L/πvF .

Full depletion is reached for V0 → ∞ when ∆ν(ε) = −νb.
This is equivalent to say that a real gap has developed in
this limit, up to energy Eg.

As a side remark, we note that �∆ν(ε) measures the
so called “phase delay time”, τdel, of a wave-like particle
that is scattered by the barrier [14]. It vanishes when the
barrier is absent (V0 = 0) and becomes infinite at the
bottom of the band.

If the conduction band edge is not too close to the
Fermi level the degenerate semiconductor is an ideal metal
which conserves the particle-hole symmetry of the single
particle model we are referring to. Hence the same pic-
ture applies to hole transport from L to R, immediately
below εF . This implies symmetry in reversing the bias, ex-
cept for the fact that the Schottky barrier is asymmetric
between the two cases.

4 The shift in the minimum of R(V)

In the previous Section we have shown that, if the semi-
conductor is degenerate, formation of the Schottky bar-
rier is not alternative to conduction electron screening,
but both features coexist. According to the results of our
one-dimensional model, if the Schottky barrier is large,
an effective energy gap develops on the Sm side, at least
for what tunneling is concerned: single electron states
are present at those energies, but they are involved in
the screening as resonances at the depletion layer charge.
Apart from the possible asymmetry, this “gap” Eg inhibits
the tunneling at T = 0 up to voltages (Eg+∆g)/e. The Sm
density of states to be put in the formula for the tunneling
current should be considered as energy dependent. A max-
imum in the differential conductance has to be expected
at V > (Eg +∆g)/e.

Because of its large doping the semiconductor of the
experiment in [3] is indeed degenerate. Therefore, one can
use the Friedel sum rule to relate the change in the density
of states with the charge accumulated at the Schottky
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Fig. 6. Estimated dependence of the energy shift of the R(V )
minimum, Eg on the parameter (kFL∗)−1 which characterizes
the degenerate semiconductor (see text), as calculated from
equation (8), using µ − Ec � 253 meV.

barrier: ∫ µL(V )

Ec

∆ν(ε)dε = nimpAk
−1
F (7)

where nimp is the density of dopants which are fully ion-
ized at the interface of cross sectional area A, within the
screening length k−1

F ∼ 0.1w. If we assume, for simplicity,
that tunneling states on the Sm side are fully depleted in
an energy range Eg across µ, we can derive Eg from the
equation:

∫ µ+Eg/2

µ−Eg/2

νb(ε)dε = 2π L∗
(

2m∗
n

h2

)3/2

×
∫ µ+Eg/2

µ−Eg/2

(ε− Ec)1/2dε = nimpk
−1
F . (8)

Here L∗ is the distance from the interface over which
electrons keep phase coherence, so that the scattering pic-
ture of the previous section can be applied. This is the
minimum between the inelastic scattering length lin and
the thermal length LT = (�D/2πkBT )1/2 (where D is the
diffusion coefficient in the Sm).

In Figure 6 we plot Eg vs. (kFL∗)−1 calculated for
the experimental value n = 10+19 cm−3. We find that, for
values of the ratio (kFL∗)−1 ranging between ≈ 0.004 −
0.008 the value of Eg obtained is of the same order of
magnitude of the one measured, i.e. Ege � 2.1 meV.

In conclusion, we focused on the shift of the voltage
position of the minimum in the R(V ) curve of the Nb −
n++GaAs contact that has been observed experimentally.

We attribute this shift to effects in the charge screening
at Schottky barrier of the S − dSm interface, on the Sm
side.

We solved a simple one-dimensional barrier model and
we calculated the modification of the density of states
due to the single particle scattering. Our results are inter-
preted as to mimic what happens on the Sm side. Close
to the interface, states are unavailable for tunneling, in an



314 The European Physical Journal B

energy range Eg around the Fermi energy of the degener-
ate semiconductor. Hence the minimum of the R(V ) curve
is shifted at the voltage V ∼ (Eg +∆g)/e.

The value of Eg that we calculate is of the same order
of magnitude of the one that is measured in the Nb −
n++GaAs contact.

Useful discussions with A. Barone and G. Schön are gratefully
acknowledged. This work was supported by Russian Founda-
tion for Fundamental Research, Grant N 98-02-17373.

Appendix A: The Schottky barrier
in the S-Sm junction

It is well known that a Schottky barrier builds up at
the interface of a normal metal-semiconductor (N − Sm)
contact.

In a macroscopic picture of thermal equilibrium, the
electro-chemical potential is overall constant across the
junction. This leads to band bending close to the interface
on the Sm side, as shown in Figure 3, and to a depletion
of carriers, with the formation of a double layer of charges
of opposite sign. This, in turn, implies the presence of an
electric field across the junction. When the metal becomes
superconducting, this picture is not much altered on very
general grounds which indeed apply to the case of Nb −
n++GaAs junctions under study here.

In this appendix we use naive two-fluid arguments to
show that the electrodynamical equilibrium of the junc-
tion is largely independent of the superconducting proper-
ties and that the depletion length w is indeed determined
by normal properties. Our macroscopic arguments hold
only if all quantities vary slowly in space at the interface
and do not involve extra features of the superconducting
coherence, such as Andreev conduction across the junc-
tion. The latter only occurs in very transparent contacts.

To discuss how the charge distribution in the metal
side adjusts to screen the electric field due to a voltage
gradient −∇V , we consider a normal fluid and a superfluid
and we characterize their quantities by means of the la-
bel n and s respectively. The electro-chemical potential φ
is related to the chemical potential µ simply by:

−eφn,s = −eV + µn,s.

In the absence of a normal current across the junction,
if σ is the conductivity of the normal fluid, we have: jn =
−σ∇φn = 0, what implies that ∇µn = −e E.

On the other hand, the Josephson equation for the su-
perfluid connects the electro-chemical potential φs to the
phase of the order parameter χ: 2eφs = �

2e χ̇ = const. This
phase can be “gauged away” by lumping it into the vector
potential of the superconducting side, so that the super-
fluid velocity, defined by the London equation, becomes:
vs = − e

mc( A+ ∇Λ) with Λ = �c
2eχ. Then, the stationarity

condition v̇s = 0 straightforwardly implies ∇µs = −e E,
as well.

A charge imbalance in a superconductor can be related
to a change of chemical potential δµn,s [15]:

Q = −e(χsδµs + χnδµn). (9)

Equation (9) defines the charge susceptibilities χn,s of the
two fluid system. At T = 0 is χn = 0, while at T ∼ Tc

is χs = πν(εF )∆g/2kBT ( where ν(εF ) is the density of
states at the Fermi energy). Given the sum rule χn +χs =
2ν(εF ) at all temperatures, we get:

∇Q = e2(χs + χn)E = −2e2ν(εF )∇V. (10)

Finally, Poisson’s equation ∇2V = −4πQ/εr yields:

∇2Q− 1
λ2

D

Q = 0,
1
λ2

D

=
4πe2

εr
2ν(εF )

where λD is the Debye screening length for charges in the
metal [13]. The argument also applies to the screening of
the charge imbalance when the Schottky barrier forms,
what proves that, at the mean field level, the presence of
superconducting order in the metal is immaterial in our
case.

References

1. E.L. Wolf, Principles of Electron Tunneling Spectroscopy
(Oxford University Press, New York, Clarendon Press,
Oxford, 1985)

2. J.R. Gao, J.P. Heida, B.J. van Wees, S. Bakker, T.M.
Klapwijk, Appl. Phys. Lett. 63, 334 (1993)

3. V.I. Barchukova, V.N. Gubankov, E.N. Enyushkina,
S.A. Kovtonyuk, I.L. Lapitskaya, M.P. Lisitskii, A.D.
Maksimov, V.G. Mokerov, A.V. Nikiforov, S.S. Shmelev,
Tech. Phys. Lett. 21, 208 (1995)

4. A.W. Kleinsasser, T.N. Jackson, D. McInturff, F. Rammo,
G. D. Pettit, Appl. Phys. Lett. 55, 1909 (1989)

5. W.M. van Huffelen, T.M. Klapwijk, D.R. Heslinga, M.J.
de Boer, N. van der Post, Phys. Rev. B 47, 5170 (1993)

6. A. Barone, M. Russo, Phys. Lett. A 49, 45 (1974)
7. J. Knoch, J. Appenzeller, B. Lengeler, J. Appl. Phys. 88,

3522 (2000); H. Takayanagi, T. Kawakami, Phys. Rev.
Lett. 54, 2449 (1985)

8. S.M. Sze, Physics of Semiconductor Devices (Wiley-
Interscience, New York-Chichester-Brisbane-Toronto-
Singapore, 1981), p. 248

9. P.S. Kireev, Semiconductor Physics (Mir Publishers,
Moscow, 1974)

10. A. Kastalsky, A.W. Kleinsasser, L.H. Greene, R. Bhat,
F.P. Milliken, J.P. Harbison, Phys. Rev. Lett. 67, 3026
(1991)

11. G.E. Blonder, M. Tinkham, T.M. Klapwijk, Phys. Rev. B
25, 4515 (1982)

12. D.R. Heslinga, W.M. van Huffelen, T.M. Klapwijk, S.J.M.
Bakker, E.W.J.M. van der Drift, Cryogenics 30, 1009
(1990)

13. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt-
Saunders International Editions, Tokyo, 1976)

14. A. Tagliacozzo, Nuovo Cimento D 10, 363 (1988)
15. M. Tinkham, Introduction to Superconductivity (Mc Graw-

Hill Int. Editions, 1996), Chap. 11


